Support

Support Options

Submit a Support Ticket

Exoplanet Biosignatures Workshop-Without-Walls Review Papers - Discussion Forum

Discoverability
Visible
Join Policy
Open/Anyone
Created
19 Apr 2017

Dear Colleagues,

TODAY (Friday 9 June, 2017) is the last day of the official comment period for the NExSS Exoplanet Biosignatures review papers.  

The forum will remain open so that you may continue to read and contribute to the online discussion, but note that there is no guarantee that your comments will be incorporated into the final manuscripts.

Thank you for your participation in this community-wide interchange! Your input is vital to the advancing the science and technology for the search life elsewhere in the universe.

If you wish to receive email updates of discussion postings:  

  1. login
  2. click 'Forum' on the left panel
  3. check the box for 'Email forum posts' on the right panel and click Save
Close

Welcome to the community discussion forum for the the NExSS Exoplanet Biosignatures Workshop-Without-Walls!

The workshop was held as a series of online participatory state-of-the-science review sessions during June 13-July 15, 2016, and an in-person meeting including video-conferencing participation in Seattle, WA, July 27-29, 2017.  The culmination of these meetings is a set of 5 review papers on the science, technology, and future of remote searches for signs of life on exoplanets.  To ensure broad interdisciplinary input, the international scientific community was widely solicited to participate in the writing of these manuscripts.  It is intended that they will serve as in-depth references to inspire students to senior researchers in research topics to further the search for life outside the Solar System.   These papers will be published as products of the Exoplanet Exploration Program Analysis Group (ExoPAG) Study Analysis Group 16 (SAG16).

Before final publication, we are posting the drafts for a 3-week community comment period May 16 - June 9, 2017, links below.  You may view the papers and discussions without login. To post comments, please login or register here.  

Conference contacts:
Shawn Domagal-Goldman, shawn.goldman *at* nasa.gov
Nancy Y. Kiang, nancy.y.kiang *at* nasa.gov
Niki Parenteau, mary.n.parenteau *at* nasa.gov

Review Papers for Discussion

1. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life

Contact: Edward Schwieterman, edward.schwieterman *at* ucr.edu
Summary: This paper provides an in-depth review of current understanding of potential exoplanet biosignatures including gaseous, surface, and temporal biosignatures. We focus particularly on advances made since the review by Des Marais et al. (2002).  This paper does not propose new biosignatures strategies, but reviews currently existing literature to provide a foundation for a path forward. We survey some biogenic spectral features that are well-known in the specialist literature but not yet robustly vetted in the context of exoplanet biosignatures.  We also briefly review advances in assessing biosignature plausibility, including novel methods of determining chemical disequilibrium and the minimum biomass required for a given atmospheric signature. 

2. Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment

Contact: Victoria S. Meadow, vsm *at* astro.washington.edu
Summary: In this paper we provide an overview of the end-to-end development of O2 as a biosignature for extrasolar planetary observations.   We describe how, during the coevolution of life with the early Earth’s environment, the interplay of sources and sinks of O2 may have suppressed its accumulation in the atmosphere for several billion years, a false negative for biologically-generated O2.   Meanwhile, recent computer modeling research on potential mechanisms in exoplanet environments that may generate relatively high abundances of atmospheric O2 in the absence of a biosphere illustrate the concept of false positives.   We then describe current knowledge of specific photometric, spectroscopic and time-dependent observations of environmental context that could be made by future observatories to identify O2 as a biosignature, and discriminate it from potential false positives.   O2 was originally believed to be an unambiguous indicator for life, but the recent rich body of interdisciplinary research on the early Earth, and the predictive power of star-planet computer models, illustrate O2 as a model for the importance of environmental context in the being able to recognize and interpret biosignatures.

3. Exoplanet Biosignatures: A Framework for Their Assessment

Contact: David Catling, dcatling *at* u.washington.edu
Summary: We present a general scheme for observing potential exoplanet biosignatures and gaining and expressing confidence levels for positive detection of signs of life. An appropriate framework uses models with data (in the form of exoplanetary system properties and spectral or photometric data) to find the Bayesian likelihoods of those data occurring if the exoplanet has or does not have life. The latter includes the case of false positives, i.e., where abiotic sources mimic biosignatures. Prior knowledge (including all factors that influence habitability and previous exoplanet observations) would be combined with the likelihoods to arrive at the probability of life existing on a given exoplanet given the observations.

4. Exoplanet Biosignatures: Future Directions

Contact: Sara I. Walker, sara.i.walker*at*asu.edu
Summary: We summarize novel concepts about planetary biosignatures that are just emerging in the literature, addressing the importance of environmental context and biology that may be very different from Earth.  Topics include evaluating:  the evolutionary trajectory of coupled systems to identify high- vs. low-probability outcomes; classification of biosignatures from process-based, multi-disciplinary perspectives;   laboratory and theoretical validation outside of Earth-like conditions.  We summarize the debates over these novel ideas, proposals from the community for developing them further, and consider modeling of observational discriminatory power, and set the stage for future instrument development requirements.

5. Exoplanet Biosignatures: Observational Prospects

Contact: Yuka Fujii, yuka.fujii.ebihara *at* gmail.com
Summary: While a variety of exoplanet biosignatures have been proposed, none of these has been detected or constrained. We provide an overview of the prospects for biosignature detection and general characterization of potentially habitable exoplanets, focusing on temperate Earth-size planets. We review the planned space-based and ground-based projects as well as the basic methods these missions will employ, and summarize what kind of properties maybe observable as the new facilities come on line. We distinguish reasonable expectations for the first constraints on spectroscopic features of atmospheres (and perhaps surfaces) of transiting and non-transiting planets obtainable before 2030, versus larger surveys to address statistical questions such as the occurrence rate of habitable environments, for future projects beyond 2030. The broad outlook which this paper presents is useful in considering new methodologies to characterize exoplanets of astrobiological interest, and in developing a framework to evaluate the possibility of biosphere based on the observables. 


This website is being run by Knowinnovation Inc. and is supported by the Lunar and Planetary Institute (LPI). LPI is operated by the Universities Space Research Association (USRA) under a cooperative agreement with NASA. The purpose of this site is to facilitate communication from and between scientists that are part of the Nexus for Exoplanet Systems Science (NExSS). Although NExSS is led by researchers whose funding comes from NASA, NExSS is a community endeavor. As such, any opinions, findings, and conclusions or recommendations expressed on this website are those of the author(s) and do not necessarily reflect the views of NASA.